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Abstract Two models for the investigation of the quanNm damped kicked-rotator p’oblem are 
introduced and analysed in n unified fashion. For the first model we follow the Caldeh-Leggelt 
approach while the second constitutes a simplification of the Diruich-Graham model. These 
models enable one to investigate the effects of noise and dissipation for systems that exhibit chaos 
in the classical limit and quanNm localization othenvise. The roLator is coupled via its angle 
coordinate to a heat bath that is held at an arbitrary temperature. Noise time-autocorrelations 
which may arise from such coupling and the validity of the Markovian approximation are 
discussed. 

1. Introduction 

The kicked rotator constitutes a prototype system for the investigation of Hamiltonian chaos 
[I]. Quantum mechanically, the chaotic nature of the dynamics is suppressed [Z] due to 
localization [3]. It has been found by Ott, Antonsen and Hanson [4] that uncorrelated white 
noise destroys coherence and hence localization. However, if noise arises from the coupling 
to a heat bath then a more detailed treatment is desired. Such a treatment should take into 
account two effects. One is noise autocorrelations which are expected at low temperature 
151. The other is friction which results in damping and dissipation of energy. While noise 
results in recovery of diffusion, dissipation of energy tends to balance it and a steady state is 
reached. Similar interplay of noise and dissipation is found in the study of Zener dynamics 
[GI. 

Dittrich and Graham (DG) [7,8] introduced a model for the investigation of the combined 
effect of noise and dissipation in the damped quantum kicked-rotator (QKR) problem. Using 
the master-equation approach [9] they were able to compute the quantum mechanical time 
evolution of the system. Taking the limit of ft + 0 they were also able to consider the 
semiclassical limit which led them to the following conjecture: regardless of the quantization 
scheme ‘in the semiclassical limit, dissipative quantum maps reduce to the classical maps 
with additional Gaussian noise terms determined by quantum theory’. However, this 
important pioneering work left open the following questions. 

(i) The master-equation approach of this work involves a Markovian treatment of the 
dynamics [SI. Consequently, long-range noise timeautocorrelations, which may arise, are 
automatically ignored. 

(ii) The effect of finite temperature has not been explored since a zero-temperature heat 
bath has been assumed. 

(iii) The relation of DOS results to the earlier work by Ott el al 141 has not been 
demonstrated. 
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(iv) The classical limit of the DG model is not explicit and has not been investigated. 
(v) The implications of the DG conjecture are not clear. Both the DG model and the 

master-equation approach originated from atomic physics [9]. In the latter context the 
classical limit is usually of less interest. Evidently, this is not the case in the field of 
‘quantum chaos’ where the fingerprint of the classical limit on the quantum dynamics is 
considered to be a main issue. Indeed, a different kind of model and analysis are therefore 
desired. 

The main complication that arises once one is interested in coupling a rotator to a bath 
is how to formulate a coupling scheme that does not ignore the natural periodicity of its 
angle variable. Otherwise, if one replaces the angle by an extended coordinate, one obtains 
a new, different problem which has been investigated and named ‘the quantum kicked- 
particle problem’ in which it was possible there to use the Caldeira-Leggett (CL) coupling 
scheme [I I ]  which is linear in the position variable. The latter has been used to treat the 
damped-particle [I21 and the damped-oscillator 1131 problems and later on was also applied 
to investigate time-dependent problems [5]. However, it turned out [lo] that the quantum 
kicked-panicle problem has quite unique features that are not shared by the QKR problem. 
In particular there is a stronger sensitivity to noise due to a spreading mechanism for the 
desttvction of coherence. Thus, we again face the complication of how to formulate an 
appropriate coupling scheme which does not ignore the periodicity of the position variable. 
One strategy is simply to introduce the coupling via the momentum coordinate. Such 
a model has been introduced [14] and the effect of low-temperature correlated noise on 
coherence has been investigated. However, it was demonstrated that friction in this latter 
model does not result in dissipation of energy and therefore this model is also inappropriate 
for the investigation of the damped-QKR problem. 

The purpose of the present work is to analyse, in a unified way, two models for the 
investigation of the damped-QKR problem. Thc first model is obtained via modification of 
the standard CL model. The second constitutes a simplification of the LX model. Besides 
dealing with questions that were introduced in a preceding paragraph we shall also consider 
the following approximations: 

(i) a semiclassical treatment of the dynamics; 
(ii) replacement of the bath by a c-number noise source; and 
(iii) Markovian treatment of the dynamics. 
By ‘classical treatment of the dynamics’ we mean that the rotator can be treated as a 

classical object. This does not mean that the quantum nature of the bath may be ignored. 
Thus we are able to distinguish between quantum effects that originate in the bath (and are 
therefore model-dependent) and quantal effects that are associated with the quantum nature 
of the rotator itself. This distinction is crucial in order to resolve such an ambiguity in the 
DG conjecture. 

Replacement of the bath by a c-number noise source is expected to be legitimate on 
a time scale which is much shorter than the relaxation time. Within the framework of 
the Markovian treatment, noise time-autocorrelations that may arise due to the quantum 
nature of the bath are ignored. In a classical treatment of chaotic dynamics this should 
not bother us since, due to the exponential instability of the phase-space trajectories, we 
expect no memory for long-range noise time-autocorrelations. In the quantum mechanical 
problem, the situation is quite different due to long-range dynamical correlations [IS, lo]. 
The interplay of  the latter with the former may lead to either enhancement or reduction of 
the induced diffusion [15,10,14]. 

The outline of the paper is as follows. In sections 2 and 3 the ‘ohmic model’ and 
the ‘simplified Dittrich-Graham model’ are introduced and a classical treatment of the 
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dynamics is considered. Diffusion in the quantum kicked-rotator problem is analysed in 
section 4 where the combined effect of noise and dissipation is also discussed. Finally, 
the conclusions are s u m m ~ z e d  in section 5. The four appendices at the end of the paper 
include the details of some calculations. 

2. The ohmic model 

Consider a particle that is free to move in one dimension and whose unperturbed Hamiltonian 
may be time-dependent 

= $ 6 2  + V ( 2 ;  t )  (2.1) 

where 2 and 6 are conjugate coordinates [i, 61 = 2. A bath is defined by the Hamiltonian 

with [&, &] = ih. The simplest Hamiltonian for the investigation of the damped-particle 
problem has been proposed by CL [ll-131, namely 

where C, are coupling constants. Note that the coupling is linear, namely 

(2.3) 

(2.4) 

and that the particle experiences the same environment irrespective of its spatial position. 
The bath is characterized by the spectral function 

The significance of this spectral function will be apparent in the following. 
Consider now a rotator whose unperturbed Hamiltonian is still (2.1); however, periodic 

boundary conditions are imposed on the interval [O, 2 ~ 1 .  A heuristic visualization of the 
system is to consider a particle which is free to move in a one-dimensional ring. The 
simplest choice for the interaction term 'Hiot that constitutes a linear coupling scheme is to 
replace 2 in (2.4) by a periodic function of 2 ,  e.g. sin(2). However, for such a choice the 
particle experiences a non-homogeneous environment, i.e. in different parts of the ring the 
local environment is different. In order to overcome this problem we propose to take 

?lint = - C,~,.JZ sinG + qm) (2.6) 
n 

with phases 9m such that 

(2.7) 
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where J(o) is the spectral function (2.5) of the bath. Thus, if we consider a partition of the 
bath oscillators into subsets of oscillators whose frequencies o. are the same, then, within 
each subset, the fpa are distributed uniformly. Finally, the total Hamiltonian of the system 
plus the heat bath is 

31 XO + Xint + xbah,. (2.8) 

The quantum state of the particle may be represented by the Wigner function p(x ,  p ) .  
The time evolution of the Wigner function for finite time and sufficiently small h may be 
approximated by that of a classical distribution in phase space. We shall now use such 
an approximation and we shall title it a 'classical treatment of the dynamics'. The latter 
term implies that the system is considered to be classical while the bath gets full quantum 
mechanical treatment. The limit A + 0 is not taken. The equations of motion of classical 
points that form a distribution in phase space are x = p and 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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The definition of the response kernel for negative times is of no significance. For simplicity, 
we adopt the convention a(t - t') = 0 for t c t'. 

In order to make further progress, a specification of the initial state of the system plus 
the bath is needed. We shall aSsume that initially (at time t = 0) the system is prepared in 
some arbitrary quantum state while the bath oscillators are in thermal canonical equilibrium 
with some reciprocal temperature g. The Wigner-function representation of the probability- 
density matrix is then (see appendix A) 

(2.17) 

where 

Using (2.18) one obtains the expectation values 

(2.19) 

and hence it is easily found that (F,(t)) = 0, while 

where 

(2.21) 

Now we may tum back to the equation of motion (2.9), substitute the expression (2.13) and 
use the results (2.15) and (2.20) in order to cast the equation into Langevin's form, namely 

(2.22) p = -V'@) + F ~ C t i O O  + F( t ) .  

The friction term Ffridos originates from F F  and takes the form 

Ffriclian = - b ( t  - r ' )  sin[x(t) - x( t ' ) ]  dt'. (2.23) 1' 
The noise term F ( t )  originates from F,(t) and satisfies ( F ( t ) )  = 0, while locally 

( F ( t ) F ( t ' ) )  = @(t - r ' ) .  (2.24) 

The Langevin equation (2.22) together with (2.23) and (2.24) constitute a complete 
description of the reduced dynamical behaviour of the system on a time scale such that 
quantum to classical correspondence is expected. 

Further simplification of the expression (2.23) for the friction term is possible if a(r)  
decays by time scale rc which is small compared with the dynamical t h e  scales of the 
unperturbed problem. The validity of this assumption should be established once we let 
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J ( o )  have some specific functional form. We may then substitute x(z) - x(t‘) = p(t - t’) 
into (2.22) and obtain the result 

-sgn(p)J(o = I P I )  (2.25) Ffr iCt iO”  = 

where J(w) is the spectral function of the bath. If we further assume that the heat bath is 
an ‘ohmic heat bath’ in the sense of CL [ l l ,  131, namely 

J ( O )  = qoe-m/oG (2.26) 

then the friction is proportional to velocity 

Ffrictioo = -qp. (2.27) 

It is assumed that the cutoff CO, is much larger than aU other relevant frequencies of the 
problem. The noise, using (2.21). has the autocorrelation function [SI 

where 4 = l/oc. It has two regimes of behaviour; the short time where 

f $ ( T )  = --- h q l  for s,<<r<<fip 
?I r= 

and the long-time regime 

@ ( T )  = -2--exp 2n ( -2x- iB) for 
B fiB 

It satisfies the sum rule 

‘I /- f$(T)dT = 2-. 
m B 

hB << 5. 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

In the limit of high temperatures, i.e. if fib is smaller :n the relevant , ~amical time 
scales, this autocorrelation function may be replaced by the well known classical expression 

(2.32) q 
+ ( T )  = 2--6(1) 

B 
representing white (uncorrelated) noise. 

One may have the incorrect impression that the functional form of the interaction term 
(2.6) is essential in order to obtain the ’ohmic behaviour’ (2.27). We therefore make a 
digression to show that this is not actually the case. Let us now assume a more general 
form for the interaction term, namely 

(2.33) 
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where U @ )  is some 2x-periodic function. However, we restrict ourselves to the case of 
the ohmic bath. The spectral function J ( o )  has the CL form (2.26) and consequently, using 
(2.16). the response kernel is 

(2.34) 

with rc = l/oc. Assuming tc to be shorter than the dynamical time scales of the unperturbed 
problem one may use instead the expression 

L 

H 
2a(r) = -qoc8(r) - qJ ‘ ( t ) .  (2.35) 

Using the same procedure that previously led to (2.23), one obtains equations (2.6). (2.9). 
(2.11). (2.12) and (2.15), with the replacement &sin( ) + U (  ) and f icos(  ) + U’( ), 
and consequently 

(2.36) 

The factor in the square brackets can be rescaled to 1 by an appropriate normalization of U 

with no loss of generality to obtain the desired expression (2.27). 
Classical treatment of the dynamics implies treating the system as a classical object while 

the bath is considered to be a quantal entity. We were able to obtain the reduced equations 
of motion for the system and to distinguish between ‘noise’ and ‘friction’ effects. One may 
wonder whether a similar (corresponding) reduction is possible within the framework of a 
full quantum mechanical treatment and, furthermore, whether the distinction between noise 
and friction is still meaningful. In particular, inspired by the results of the classical treatment, 
one is interested in the question as to whether the effect of the bath is the same as that 
of a c-number noise source if friction is ignored. Indeed the Feynman-Vernon formalism 
[16] enables one to consider the exact reduced dynamics of a system that is coupled to a 
bath. A detailed presentation of this formalism will not be given in this paper, only some 
observations which are needed for later discussions are referred to in what follows. 

The Hamiltonian of the system combined with the bath is (2.8) with interaction terms 
given by (2.4) for the CL model and (2.6) for our ohmic model. The system and the bath 
are assumed to be prepared initially as in (2.17). A path-integral formula enables one 
to compute the reduced propagator K of the system. The time evolution for an arbitrary 
preparation is 

h ( x t ,  P I )  = S h ( x t v  ~ r l x o ,  PO)P~&O,  po)dxodpo (2.37) 

where p ( x ,  p )  is the Wigner-function representation of the reduced probability-density 
matrix of the system. The reduced propagator is found to be a functional of the external 
potential V ( x ,  t), the response kernel a(r)  and the noise autocorrelation function #(t), 
namely 

= K [ V ( x :  t ) .  U(?), O(r)l. (2.38) 

Using (2.38), it is found that if a(r)  decays on time scale rc. which is small compared 
with the time scales of the unperturbed problem, and if the noise is white (i.e. e(?) is a 
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&function) then a Markovian treatment of the dynamics is exact. That is the propagator K 
can be factorized and be written as a convolution of shorter time steps. For example 

K(xt2v PI,  Ixi,,, pi,,) K(xt, ,  P I , I X I ~ ,  ~ t , ) U x t ~ ,  P I I I x , P , )  bi, dpt,. (2.39) 

More details may be found in [5] where the validity of the Markovian treatment is discussed. 
A further observation [ 16,5] is that the true reduced propagator (2.38) may be obtained using 
the following prescription: 

s 
(i) add an appropriate driving force F to the external potential V ( x ;  f ) ;  

(ii) set $(r)  in equation (2.38) to zero: 
(iii) compute the resultant fictitious ‘noiseless’ propagator KF: and 
(iv) to obtain the true propagator K, average KF over realizations of F taken from a 

Gaussian ensemble. 
Thus the ‘noiseless’ propagator K F  corresponds to a specific realization of F, while the 

true propagator K corresponds to the influence of a c-number noise source that is represented 
by F. To illustrate this prescription let us refer first to the CL model. The proper definition 
of the ‘noiseless’ propagator for the CL model is 

KF K [ V ( x ;  t )  - xF(t)or(r),O] (2.40) 

where F ( t )  is a real function of time. To obtain K, the ‘noiseless’ propagator ICF should 
be averaged over realizations of F ( t )  such that ( F ( t ) )  = 0 and 

( F ( t ) F ( t ‘ ) )  = $ ( f  - f ’ )  (2.41) 

where (. . .) denotes here the average that is taken over the realizations of F ( t ) .  Since KF 
corresponds to the time evolution in the presence of friction, it follows that, as long as the 
friction effect is negligible, the Hamiltonian (2.3) may be replaced by 

G = % - i F ( t )  (2.42) 

where average over realization of F ( t )  is implicit This argument can also be extended for 
the purpose of investigation of our ohmic model. Namely, one may replace the Hamiltonian 
(2.8) with (2.6) by 

‘H = ‘Ho - dp F,(t)&sin(? + p) (2.43) s 
where F,(t) satisfies (F,( t ) )  = 0 and 

(2.44 
1 

2 X  
(FP(t)FP?(t’)) = -8(p - $?’)$(I - t’). 

Thus, we conclude the following: the effect of the bath may be represented by the 
combination of friction and a fluctuating c-number classical force. The timeautocorrelations 
of the latter are determined by the nature of the bath and the coupling scheme through the 
single spectral function J ( o ) .  In particular: 

(i) the distinction between noise and friction, which is modelled by the classical 
Langevin equation, is also a natural consequence of the quantum mechanical treatment; 

(ii) on time scales such that the friction effect is negligible, the effect of the bath is the 
same as that of a c-number noise source; 

(iii) Markovian treatment of the dynamics is valid provided the noise is white. 
Condition (iii) is met only at high temperatures. 
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3. The Dittrich-Graham model and its simplification 

Dithich-Graham (DG) [7,81 have considered the quantum kicked rotator coupled to a zero- 
temperature bath. The unperturbed Hamiltonian of the rotator is of the general form (2.1) 
and the bath is defined via 

f i b a ~  = Cho,iC,&. (3.1) 
01 

The interaction term is 

where the g, are coupling constants and 

(3.3) 

The eigenstates In) of jj are such that Pin) = hnln). The bath, which has been considered 
only for zero temperature, is chosen so that 

(3.4) 

(see [7], equations (3.10)-(3.16)). The disadvantage of this model in the present form is 
that the classical limit is not explicit. Therefore, one is urged to rewrite it in a somewhat 
more convenient form. First, one substitutes 

(3.5) 

so that the bath Hamiltonian (3.1) takes the standard form (2.2). Then f is expressed via 
the dynamical variables of the rotator 

(3.6) 

where the operator 
The interaction term (32) can now be cast into the form 

is defined via its diagonal representation and 6' is the step function. 

The operators 2 and G are f i$@ + I') and f i f ( I ' t  - I?), respectively. The coupling 
constants are C, = and = m g a  and the specttal functions of the 
bath with respect to the dynamical variables li and 0 are, respectively, 

(3.8) 
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The essential features of the DG model are now transparent: the heat bath is non-ohmic 
(i.e. its spectral function does not have the CL form (2.26)) and the coupling to the bath 
is momentum-dependent (i.e. 2 and also depend on the momentum $> unlike in (2.33)). 
In order to see the momentum dependence more clearly we introduce for concreteness the 
explicit expression for ii, namely 

li = z/f;;(r + r+) =  COS?^^+ ficoslz)  + op). (3.9) 

It will be apparent in the subsequent discussion that the proportionality 2 cx fi is crucial 
in order to obtain friction that is proportional to velocity in the case of coupling to this 
non-ohmic bath. 

We shall introduce now a simplified model that has the same essential features as those 
of the DG model. The bath is assumed to have the Hamiltonian (22) while the interaction 
term is 

Gin,= - C C , ~ , ~ [ ~ s i n ( ~ + p ~ ) ~ + H C ] .  (3.10) 

The spectral function of the bath is non-ohmic and has the form 

JOG(@) = v -IQ (3.1 I) 

which is different from the CL form (2.26). The phases pe are distributed uniformly so that 
(2.7) is satisfied. The same procedure that led to the Langevin form (2.22) of the classical 
equation of motion may be used (appendix B) to obtain 

+ G @ )  = + @ctiorJ 

p = -V’(X) + F H d ”  + F(t ) .  

The friction term that is responsible for the damping effect is 

(3.12) 

(3.13) 

instead of (2.23). The kernel a(t - t’) is defined as in (2.16) with the appropriate spectral 
function (3.11). Further simplification is possible if rc = l/oc is shorter compared with 
other time scales of the problem, leading to (appendix B) 

Ff&On = -J(o = 1pl)p = - q p  (3.14) 

instead of (2.25). Hence, in spite of the non-ohmic bath (3.11). the friction is indeed 
proportional to the velocity as for the ohmic model. The expression for the non-generic 
friction term is found in a similar fashion (appendix B) leading to 

U GfriEtion = -2 sgn(p) im cos ( :U) du. n (3.15) 

This friction term diverges in the limit p /wc  -+ 0. This unphysical divergence may be 
avoided by putting a lower cutoff on the function J(w)  in the vicinity of o = 0. Furthermore, 
we shall immediately see that such a lower cutoff is required to make the model well defined 
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for finite temperatures. We turn to discuss the noise terms which appear in (3.15). These 
noise terms (appendix B) satisfy ( F ( t ) )  = (G( t ) )  = Q and 

(F( t )F( t ‘ ) )  = I P ~ $ D G ( ~  - t’) (3.16a) 

(3.16b) 

(F(t)G(t’))  = 0. (3.16~) 

Note that (3.16~) is not self-evident. The autocorrelation function - t’) is obtained 
by substitution of the non-ohmic spectral function (3.11) in the usual definition (2.21). This 
autocorrelation function is ill defined at finite temperature since it then constitutes a Fourier 
transform of l/frequency fluctuations spectrum, i.e. 

(3.17) 

Consequently, the variance of the noise which is given by ~om$(w)dm/a  is infinite. A well 
defined expression for - t’) is obtained only at zero temperature: 

Q D G ( ~  - t’) = h@(t - t‘) (3.18) 

which is a white uncorreJated noise unlike the ohmic model where (2.29) applies. 

discrete-time version of the Langevin equation (3.12). It reads: 
Dittrich and Graham ([7], equation (4.9)) have considered a map that constitutes the 

Xl = XI-I + PI-1 + *l 
Pr = Apt-! + ql +driving term. (3.19) 

The damping parameter h corresponds in our notation to e-7 while the noise terms @l and 
qr satisfy (vi) = (@$) = Q and 

(%qr’) = Ipi-llWl -h)&,t, 

(%@I,) = Q. (3.20) 

This characterization of these noise terms should be compared with ow result (3.16) for 
the noise terms F ( t )  and GO).  The map (3.19) has been obtained by DG from the 
full quantal propagator after applying the master-equation formalism [9] and taking the 
‘semiclassical‘ limit. The significance of these approximations should be clarified. The 
master-equation approach is based on a Markovian treatment of the dynamics. Thus, noise 
time-autocorrelations that may arise are automatically ignored and therefore we cannot tell 
whether the noise terms in (3.19) are white due to some special feature of the model or due 
to the Markovian approximation involved. By ‘taking the semiclassical limit’, DG meant that 
the condition O(fi) < min(A,  1-A) should be satisfied. This condition implies in my view 
that the discretization of the momentum variable p = hn is fine enough to support classical 
structures that are affected by the damping. By inspection of (3.19) it is observed that the 
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relevant classical scales after one iteration are C?(A) and O(1 -A) for either the residual or 
the change in the momentum, respectively. DO have observed that the noise terms @t and 
qt are h-depcndent and disappear in the limit of h --f 0. Their conclusion has been that, 
regardless of the quantization scheme, 'in the semiclassical limit dissipative quantum maps 
reduce to the classical maps with additional Gaussian noise terms determined by quantum 
theory.' However, it is evident that the procedure which has been adopted to obtain their 
map does not enable one to distinguish between quantal effects that are due to the quantum 
nature of the zero(!)-temperature bath and those quantal effects that are associated with the 
quantal nature of the rotator itself. The reason is that their 'semiclassical' limit has been 
taken ofer the elimination of the bath degrees of freedom. Furthermore, the DG approach 
does not permit comparison with the classical limit since the latter is not explicit in their 
model. In the present work, the classical limit of the rotator has been studied explicitly, 
leading to the conclusion that (3.19) could be obtained by treating the rotator as a classical 
object while the bath is quantum mechanical. A comparision between the two approaches- 
the DG approach versus our approach-is illustrated in figure 1. 

Quantal Rotator 
coupled to 

MarkoviaR 
Master Equation 
approach 
used by DG 

r - k  Quantal 

Classical Rotator 
coupled to 
nonohmic Heat Bath The classical limit 

of the DG model 
as discussed in 
this work 

Classical 
treatment 
of the dynamics . 

Reduced 
Equations of motion 

stochastic map 
The 'semiclassical" 
limit as taken in the 
original work by DG 

the "semiclassical" 
IimitofDGrGththe 
classical treatment 

Figure 1. illustration of the relation between the DO results and the classical limit. 

4. Diffusion in the QKR problem 

We consider a rotator whose unperturbed Hamiltonian is 

(4.1) 
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Note that K and f i  are the dimensionless parameters of the Hamiltonian since the mass of 
the rotator, the spatial periodicity of the kicking potential and its time period are fixed in a 
natural way. The total Hamiltonian of the rotator plus the bath is (2.7). If the dynamics of 
the rotator are treated classically then the Langevin equations (3.12) apply. Integration of 
these equations over one time period (damped propagation + kick) yields the stroboscopic 
map 

1 
v x ( t )  = x(t-1) + -(1 - eCn)p(f-1) + g(t )  

p ( t )  =e-"(t-l)+Ksinx(r)+f(t) (4.2) 

where t will denote a discrete (integer) time variable from now on. The noise terms are 
given by 

and 

(4.3) 

(4.4) 

Note that for the ohmic model g ( t )  does not include an F(t)-independent component since 
a G(t) term, as in (3.12), is absent. For the sake of later convenience we define the 
discrete-time autoconelation function 

- t') = ( f ( t ) f ( f ' ) )  (4.5) 

and denote the variance v(0) of the noise by U. The general expression for v( t  - t') in the 
ohmic model is 

u(t  - t') = l;l l;, e-V(f-r+f-r')$,obc(r - 7') d r  dr', (4.6) 

In the weak-damping regime (vt << l), one may use the simpler relation 

I' 

u( t  - t') = 1' 1 $,.,hdc(r - r') d r  dr' 
1-1 1'-1 

(4.7) 

For the sake of later comparison, we note that similar considerations in the simplified DG 
model also yield, after inessential simplification, the map (4.2). The noise term f ( t )  then 
has, in the weak damping regime, the discrete-time autocorrelation function 

we(f - t') = ( lp l )  1' &(r - r ' )drdr '  
1-1 f'-1 

(4.8) 

instead of (4.7). The noise variable g(t)  includes, in the latter case, two contributions: one 
is a spreading term analogous to (4.4) and the other is the discrete-time version of the noise 
variable G ( t )  that appears in equation (3.12). If the dynamics take place far enough from 
IpI = 0 then the G ( t )  term is negligible. 
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Focusing on the weak damping regime, explicit expressions for the noise autocorrelation 
function u(t - t‘) are found by substitution of results (2.28) and (3.18) into (4.7) and (4.8). 
respectively. In the zero-temperature DO model the noise is white and its variance depends 
on the region in momentum space where the dynamics take place, namely 

%G = hv(lpl). (4.9) 

At finite temperature, U = 03 due to the llfrequency component (3.17) of the noise 
fluctuation power spectrum. In the ohmic model, on the other hand, the noise is 
homogeneous in phase space and is controlled by the temperature. At high temperatures 
the noise is white with 

U = 2 v / @  for hB << 1. (4.10) 

As the temperature is lowered, U decreases. But when h p  becomes larger than the period of 
the kicking (which is 1 in our system of units) the variance stops decreasing and acquires 
a cutoff-dependent logarithmic term, namely 

(4.11) 

Details of computation are presented in appendix C. The parameter 5, is related there to 
w,. The noise possesses, in the latter case, long-range autocorrelations 

u(t  - t’) = 

for It - 2’1 = 1 

for 1 c It - t’l << h p  (4.12) 

Within the framework of the Markovian treatment, the autocorrelation function is taken to 
be 

VMmkovian matmsnt(f - 1’) V&,P.  (4.13) 

Thus, if the noise is not white, as in the case of the low-temperature ohmic model, its 
autocorrelations are ignored in this approximation. If the system is chaotic and is treated 
classically, the neglecting of noise time-autocorrelations is justified by the exponential 
instability of the phasespace trajectories. In this case we expect no memory for long- 
range noise autocorrelations. For the quantum mechanical problem the situation may be 
quite different due to long-range dymica l  correlations. The effect of the latter will be 
discussed later in this section. 

In what follows we are interested in the time evolution of the momentum-dispersion 
function, namely 

E ( t )  = ( ( ( P ( t )  - P ( o ) ) 2 ) )  

where (( )) denotes here the uniform statistical average over initial conditions. The diffusion 
coefficient is then 

D = lim (E( t  + 1) - E@)). (4.15) 
r+m 
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In the absence of noise and friction as the value of K is increased, the classical dynamics 
that is generated by the map (4.2) follow the KAM scenario [I]. For K < K ,  ( K .  N 0.9716) 
diffusion is impossible (2, = 0) due to the existence of KAM curves. For K ,  < K the last 
KAM trajectories that bound diffusion in momentum space have already been destroyed. For 
large enough K (say 5 < K )  a reasonably good approximation for the diffusion coefficient 
is 

DcbiccJ [I - ~Jz(K)I ' ,K~ (4.16) 

where JZ denotes the Bessel function of order two. The leading term (2, = ',K2) may 
be obtained from the map (4.2) by assuming that successive values of the variable x 
are uncorrelated. The deviations from this value constitute a manifestation of dynamical 
correlations. The latter become negligible for 'harder' chaos (1 << K ) .  The effect of noise 
on classical diffusion has been studied by Karney et a1 [17]. If the noise is strong (U - 1) 
then dynamical correlations are destroyed and the expression 2, = i K 2  becomes exact. 
Furthermore, if v is of the order K 2 ,  or larger, then enhanced diffusion with coefficient 
2, = i K 2 +  v is attained. The diffusion in momentum space may be described by a Fokker- 
Planck equation [l]. Taking into account the weak-damping effect, the time evolution of 
the momentum-distribution function p ( p )  is determined by 

(4.17) 

The immediate result of the Fokker-Planck equation is that diffusion in momentum is 
suppressed on a time scale fp l/q. For t, << t, a steady state is reached 

(4.18) 

(4.19) 

We turn to the case of strong damping (1 < q).  Inspection of the map (4.2) reveals that 
strong damping tends to attract the classical trajectory to the curve p = sinx leading to a 
strange attractor 1181. However, the effect of noise is to smear the fine structures of this 
attractor [SI. 

So far the rotator has been treated as a classical object. We turn now to analyse the 
quantum mechanical time evolution. As a first step let us define the parameter regime which 
is of special interest. The case of strong dissipation (1 c q )  is not of great interest since the 
steady state is achieved within several time steps and quantum-to-classical correspondence 
is expected to hold. Indeed, DG have introduced numerical evidence that, in the l i t  of 
strong dissipation of the damped QKR problem, their semiclassical map (3.19) 'suffices to 
reproduce all observable effects' [8] .  However, we have demonstrated that, in essence, 
the same map may be obtained by beating the rotator as a classical object. We therefore 
conclude that classical treatment of the dynamics is satisfactory for any practical purpose 
in the case of strong damping. 

From now on we focus our discussion on the weak-damping regime ( q  << 1) of the 
damped QKR. Here the damping effect is negligible on the time scale t (< f and therefore 
to determine the diffusion in momentum space it is legitimate to replace the bath by an 
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equivalent c-number noise source as in (2.43). The onestep propagator that corresponds to 
the classical map (4.2) within this time domain is 

(4.20) 

The operation 7 e x p  denotes timeordered exponentialization. An explicit expression for 
U can be obtained only in the absence of noise. In what follows we shall adopt the 
conventional approach: the operator U is to be approximated by its discrete-time version 

fi = 7 e x p [ - i ~ ~ , ( H o -  / d p F , d s i n ( i f p ) ) d r  1 . 

[ I  - 1  [2] fi = exp - - ( ~ c o s i  + vint) exp - - - p  (4.21) 

with an interaction term that is assumed to be effective only during the kick process. Thus 

fint = dp f,(f)&sin(i + p) (4.22) 

where f&) are real functions of the discrete-time variable f that satisfy upon averaging 

s 
(fq(1)) 0 and 

(4.23) 

One may wonder whether any physics is missed by switching from the exact expression 
(4.20) to its discrete-time version (4.21). Indeed, the discrete-time version does not take 
into account the spreading effect: it is easily found that the classical map that corresponds 
to (4.21) is the same as (4.2) except that the noise term g(t )  is absent. The latter is 
associated with the noise term f( r )  via spreading in the x-direction. The insignificance of 
this spreading in the QKR problem has been discussed in section 5 of [IO]. We therefore 
consider (4.21) to be a reasonable approximation for the true propagator. 

Quantum mechanically, in the absence of noise and friction, the classical diffusive 
behaviour is suppressed (Dqumd = 0) 121. In order to explain this effect it has been argued 
[3] that the eigenstates Ir) of the one-step propagator fi are localized in the p-representation 
with localization length h$ which is given by f N iDo/h2 [19]. Here DO denotes the initial 
diffusion rate. It may be estimated [19] by using the classical result (4.16) with K replaced 
by (Zs inh/Z)(K/h) .  The eigenvalues of fi are denoted by e-iQ where o, are the quasi- 
energies. Assuming that the rotator is prepared$ momentum eigenstate Ip) ,  it follows 
that the quantum state of the rotator is approximately a superposition of $ quasi-energy 
eigenstates Ir). For short time f < f' (I' - y), a classical-like diffusive behaviour is 
followed, but on larger time scales the dynamics appears to be quasiperiodic. For the sake 
of completeness, we note that the proper definition of the energy function is now 

(4.24) 

where the bar denotes the uniform statistical average over the states Ip). The latter 
expression can be written in the form (4.14) to emphasize that a particular representation is 
not essential. From now on the notation (( )) stands for quantum statistical average, i.e. 

1 ( (6))  = lim -trace(;) 
N-m N (4.25) 
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where N denotes the dimension of the basis that is used to compute the trace. Expression 
(4.14) reduces to (4.24) if the momentum representation is used in this computation. It also 
corresponds to the classical statistical average in the semiclassical limit. 

The introduction of weak noise into the Qm system results in the destruction of 
localization. Using a heuristic picture Ott, Antonsen and Hanson [4] have argued that the 
coherence time is simply the period it takes for the noise to 'mix' neighbouring momenta. 
The diffusion that is induced by the noise (disregarding the interplay with the kicks) is 
Sp2( t )  = ut  and the condition Sp N h for destruction of coherence leads to the result 
tc = h2/u .  Within the framework of an analytical approach, a satisfactory definition of 
the coherence time should be tc = r-', where r denotes the (average) decay constant of 
the quasi-energy eigenstates. A formal approach to analyse the decay process has been 
presented by the author [IO]. A generalization of this approach for the ohmic model will 
be out l ied briefly in the present paragraph. This generalization takes into account that 
the noise is not necessarily white. A first-order perturbative estimate for the transition 
probability from state Ir) to state Is) after time t is 

(4.26) 

where os, denote differences in quasi-energies. Note that the Schdinger picture is used 
here. Substituting (4.22), and averaging over realizations of the noise, one obtains the 
transition probability per unit time 

drp &sin(f + rp) 2 

I r ) l ] ~ ~ ~ )  

where u(o) = 
is 

u(r)e"' is the noise-fluctuation spectrum. 

r =  lim - 

This expression can be cast into the form 

r = (i)'~: gc(w)v(o) 

where 

An alternative way to present the latter result is 

where C(7) = C,y(r) + C,(r)  with the real symmetric functions 

C,v(r) ((sinP(7) sinP(0))) 

C,(7) ((cos~(r)cosP(O))). 

(4.27) 

The average decay rate 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 
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"%e interaction picture is used in later definitions. It is easily verified that C ( t  = 0) = 1. 
Thus. for white noise, one immediately obtains 

(4.33) 

and therefore the heuristic result tc = h2/u is formally recovered. However, if the noise 
is not white then knowledge of the global behaviour of C(r)  is needed. Incidentally 
C( t  = 1) = 0 and there are indications [19] that the other first few correlations are 
given approximately by the classical expressions with K replaced by Zsin(h/2)(K/h). 
Classically, the long-time correlations drop to zero due to the exponential instability of 
the phase-space trajectories. It has been demonstrated quantum mechanically [lo] that 
dynamical correlations decay only after a relatively long time period f * .  The slow decay 
of dynamical correlations is a manifestation of the localization effect that is responsible for 
the suppression of chaos in the QKR system We shall assume, based on the results of a 
preceding study [lo], that the following expression holds: 

C ( r )  N -- C exp (-z) for 1 < 151 
2t* 

(4.34) 

where c is of order unity. We turn now to perform an explicit estimate of r. At high 
temperatures the noise is white, its variance is given by (4.10) and (4.33) applies. Hence 

r = (") for hg << 1. 
f i  A B  

(4.35) 

At very low temperatures one should substitute (4.11X4.12) and (4.34) into (4.31) and 
perform the summation (appendix D). The result is 

(4.36) 

where all the c's are of order unity, namely c, = (n/3), cz = (2/n), c3 = (n2/6) - 1 and 
c4 Y 0.4. This expression includes three terms. The thii is a manifestation of the interplay 
between noise timeautocorrelations and dynamical correlations. By setting c to zero, one 
obtains the Markovian approximation. In the case of the zero-temperature DG model, the 
noise is white. Substitution of (4.9) into (4.33) leads to the result 

(4.37) 

Here the decay rate is different for eigenstates that are located in various regions of 
momentum space. In particular, for those eigenstates that are in the vicinity of the origin 
( [ P I  = O), the expression r - q.$ roughly holds, while for eigenstates that are located 
around a distant site p = fino with 

We are now ready to discuss the diffusion that is induced by the noise. Following the 
heuristic picture that has been presented by Ott et a[ 141 we distinguish three noise regimes. 
For weak noise ( f *  < tc), the diffirsion process in momentum space is similar to a random 
walk on a grid with spacing h.$ and hopping probability r. The diffusion coefficient in the 
presence of weak noise is therefore D N (h.$)*( l / tC) .  If the noise is not weak (tc < t*)  
then cIassicaLlike diffusion is recovered [4] and D Y DO. For even larger noise intensity 

tl 
F = ; ( lp l )  for the DC model. 

<< InO[ the expression r zz qno applies. 
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this diffusion is enhanced [4] and is given by D = $ K 2  + U as in the classical case. A 
formal analytical treatment of the diffusion process has been presented elsewhere by the 
author [lo]. In the weak noise regime it has been established that 

.* 
2, = t*Dor = LDo. (4.38) 

Using the relation t* - 2.$ - Do/hz, one recovers the heuristic result up to a prefactor 
that has not been determined in the original version. The decay rate r and the associated 
coherence time tc should be determined via equation (4.31). Thus, the derivation that led 
to (4.38) has proved that diffusion is affected by noise timeautocorrelations. Numerical 
experiments to verify this conclusion and the validity of equation (4.38) have been performed 
[15, l o ] .  In the ohmic model, substitution of either (4.35) or (4.36) into (4.38) leads to 

t c  

h4 Do for p << v << K 2  (4.39) 

for KZ << U 
I ? K 2 + v  1 

where U is a function of the temperature (see (4.10)-(4.12)). The factor C is of order unity 
for white noise and is slightly larger @ut still of order unity) at low temperatures due to the 
noise timeautocorrelations. In the latter case, the factor includes the ratio of r, as given 
by (4.36). to the same expression with c = 0. In comparing the ohmic model with the DG 
model, we also introduce the explicit expression for D for the latter case. Substitution of 
(4.37) into (4.38) yields 

where CI and C, are constants of order unity. Here 2, is momentum-dependent leading, 
in general, to a superdiffusive behaviour. The weak-noise regime IpI < h 3 / K 2 ( l / q )  is 
effectively absent if its width is less then the localization length. Therefore, for strong 
coupling 

Eventually, we should discuss the steady state in the case of weak damping. The 
phenomenological Fokker-Planck equation (4.17) should be valid whenever a stochastic 
picture of the diffusion process applies. This is evidently the case if the noise is strong 
(D Y Dclassicd). But this is also the case if the noise is weak provided tc << tr. The most 
difficult situation in which this latter condition should be satisfied is when the temperature 
is very low. It is easily found that a sufficient condition for tc << t, to hold is h << 1 .  
Whenever the Fokker-Planck equation holds, quantal effects enter only via the diffusion 
process and the nature of the steady state is determined accordingly. For strong noise, 

< a) the diffusion is essentially classical. 
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'D N 'Dc~assicd and therefore the quantal steady state corresponds to the classical steady state. 
If, on the other hand, the noise is weak, then 'D << DCtmrisal and consequently the quantal 
steady state does not correspond to the classical steady state. The investigation of this state 
is left for future studies. 

5. Conclasions 

TWO models for the investigation of the damped quantum kicked rotator (Qm) problem 
have been presented. The lirst model constitutes a generalization of the CL model for a 
damped particle, to the case of the damped rotator, where the coupling of the bath degrees 
of freedom is to the angle variable of the rotator. The second model is a simplification 
of the DG model. The simplified DG model enables one to study the classical limit of the 
original DG model. 

The ohmic model yields complete correspondence with the classical Langevin equation 
for a damped rotator (2.22). In this model there appears a friction term (2.27) that 
is proportional to velocity irrespective of the detailed coupling scheme which is purely 
position-dependent and noise which is white at high temperatures but exhibits long-range 
time-autocorrelations at the limit of zero temperature (2.28). The DG model and its 
simplification yield only partial correspondence to the classical Langevin equation. Its 
classical Limit is represented by equation (3.12). There appears an ohmic-like damping 
term (3.14) due to the particular dependence of the coupling scheme to the bath (which is 
not ohmic) on the momentum variable. However, there is also an anomalous friction term 
(3.15) that diverges in the l i t  p -+ 0. The noise in the DG model and its simplification 
(3.16) is inhomogeneous in momentum space, uncorrelated at zero temperature (3.18) and 
turns out to be l/frequency noise (3.16) at finite temperatures. These latter features make 
the DO model and its simplification appear to be of less physical relevance compared with 
the ohmic model. 

In the strong-damping case, it has been shown via reinterpretation of the DG results 
that a classical treatment of the dynamics for the rotator is also sufficient in the quantum 
mechanical problem. We arrived at this conclusion (see figure 1 for illustration) by 
demonstrating that the semiclassical stochastic map of DG may be derived using classical 
equations of motion for the rotator. This point was not clear from the original analysis of 
DG since the h i t  of strong damping was taken only after the quantal propagator had been 
computed, giving the impression that the quantal treatment is essential. The steady state, in 
the case of strong damping, is reached after a few time steps and on thii time scale there 
is correspondence with the classical behaviour. The fine details of the classical strange 
attractor are smeared due to the noise. 

In the weak-damping case, the steady state is reached only after a relatively long 
relaxation time. On shorter time scales damping is insignificant and the bath may be 
replaced by an equivalent c-number noise source (2.43). For strong noise, classical diffusion 
is recovered and therefore the interesting regime is that of weak noise. If the noise is weak, 
namely t' << tc, where t' is the breaktime and tc is the coherence time, then destruction of 
localization may be treated within the framework of perturbation theory. One may determine 
the average decay rate r of the eigenstates (4.31) and thus the induced diffusion (4.38). 
Indeed, explicit expressions have been obtained for the decay constant (equations (4.35) 
and (4.36)) and for the diffusion coefficient (4.39). in the case of the ohmic model, and 
compared with the corresponding results for the simplified zero-temperature DG model 
(equations (4.37) and (4.40)). A Markovian treatment of the dynamics is found to be exact 
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for white (uncorrelated) noise. At low temperatures the ohmic noise possesses long-range 
timeautocorrelations (4.12) and it is found that the Markovian treatment in the latter case 
underestimates the induced decay (equation (4.36) with 0 < c )  and therefore the associated 
diffusion (via equation (4.38)). This is quite different from what is found in the case of either 
an undriven particle or an undriven rotator coupled to an ohmic bath [12,5,14,10] or even 
in the case of QKR coupled to an ohmic bath via its momentum variable [14]. For all those 
examples it has been found that diffusion is either suppressed or reduced significantly due to 
the noise timeautocorrelations at zero temperature. In the present case of damped QKR, the 
effect of low-temperature noise autocorrelations is relatively small and of opposite trend, 
i.e. diffusion is enhanced (equation (4.38) with (4.36) where 0 c c)  but not significantly. 
The origin for the dissimilar manifestations of noise time-autocorrelations in the case of 
different dynamical systems is the difference in the dynamical correlations that are involved. 
Destruction of coherence is determined by the interplay of noise autocorrelations with the 
dynamical correlations. The latter are specific for each system and coupling involved. 

The relaxation towards a steady state in the case of weak damping has been discussed 
using the phenomenological Fokker-Planck equation (4.17). A steady state is reached when 
diffusion is balanced by friction. Quantal effects manifest themselves only via the diffusion 
process. For large noise, the steady state is classical-like, whereas in the case of weak 
noise it does not correspond to the classical steady state. The complete understanding of 
the relaxation process is left as an open problem for further study. The validity of the 
Fokker-Planck equation is not justified if the coherence time is not much shorter than the 
relaxation time. Furthermore, it would be nice to find a formalism (e.g. some modification 
of the Feynman-Vernon formalism) that will enable us to find explicitly the non-classical 
steady state that is reached due to the damping process. 
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Appendix A. The Wigner function for the harmonic oscillator at equilibrium 

The probability density matrix for a quantal system whose Hamiltonian is 71(x, p )  at 
canonical thermal equilibrium is 

wherep is the reciprocal temperature ( l / k ~ T )  and 2 = trace(e-@") is the partition function. 
For a harmonic oscilator, namely 71 = p 2 / 2 m  + $mo2x2, one obtains 

1 peS(x",x') = Jmoexp[ -mm ((x" t x n )  cosh(gRo) - 2x"x') 
2rrh sinh(pho) 2f, sinh(pfio) 

This result may be derived using a variety of techniques [ZO]. 



4826 D Cohen 

The Wigner function is an optional representation of a quantal state. It is defined as 
follows: 

It is a real function that satisfies S J d x  dp/(27rA)p(x, p )  = 1. Integration of p ( x .  p )  over 
either x or p yields, respectively, the probability distribution function of either the p or the 
x variable. For the harmonic oscillator at thermal equilibrium one obtains the following 
explicit expression: 

This result reduces to the classical limit provided that the temperature is large enough 
compared with the energy quantization, namely hw << kRT. 

Appendix B. The reduced equations of motion for the simplified DG model 

Starting with the full Hamiltonian (2.8) with the interaction term (3.10), one obtains the 
following equation of motion: 

while q&) satisfies (2.11) with the replacement C, + C a m .  Using the same definition 
(2.10) for Fp(t), one obtains, instead of (2.9), the following equations 

In order to eliminate the implicit dependence of (B.2) via Fp(t) on the bath degrees of 
freedom, one should solve the equation of motion for q,(t) as in (2.12). substitute into (2.10) 
and introduce the result into (B.2). One then obtains the following explicit expressions for 
the friction terms: 

t 

&(t - t ' ) , / m s i n [ x ( t )  - x(t')]dr' 
Ffdc"oo = - l 
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The response kernel is defined as in (2.15) with the appropriate spectral function (3.11). 
The explicit expression is 

It is assumed that r, = I/oc is much shorter than any other relevant time scale, thus the 
approximations p ( t )  N PO’) and x ( r )  - x ( t ‘ )  Y p ( t  - t’)  may be used in (B.3). The results 
(3.14) and (3.15) then follow immediately. 

The computation of the noise terms for the simplified DG model is quite straightforward. 
Equation (2.20) still holds provided that the appropriate autocorrelation function, namely 
q5Do(t - t’), is used. The latter is found by substitution of the non-ohmic spectral function 
(3.11) in (2.21). The second-order moments ( F ( t ) F ( f ’ ) ) ,  (G(t)G(t’)) and (F(t)G(t’))  of 
the appropriate terms in (B.2) may then be computed to obtain (3.16). 

Appendix C. Zero-temperature noise in the damped QKR ohmic model 

The variance U of the noise in the damped ohmic model may be found by substitution of 
(2.28) into (4.6). For weak damping, in the zero-temperature limit, one obtains 

The autocorrelations with 1 e r may be found in a similar way, i.e. by substitution of 
(2.29) into (4.7). The result is somewhat clumsy. However, for any practical calculation, 
the result may be approximated by the time-discrete version of the corresponding t ime 
continuous expression (2.29), namely 

In order to find u(-+I) one may use the identity 
(2.31). Using the equality Cz, l/rz = r2/6 one obtains 

u(r) = 0 that follows the sum rule 

The above result may be represented in the form of equations (4.11) and (4.12) provided 
one uses the following definition 

For tc << 1 it leads to Gc N 0 . 2 ~ ~ .  The advantage of using expressions (4.11) and (4.12) 
stems from the fact that both the cutoff-dependent and the cutoff-independent components 
of u(r)  satisfy the sum rule u ( t )  = 0. 
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Appendix D. Decay rate in the limit of zero temperature 

Considcr the damped QKR ohmic model in the limit of zero temperature. Weak coupling is 
assumed. The decay rate r may be found by substitution of (4.11). (4.12) and (4.34) into 
(4.31). One obtains 

r = --v 1 + i (f (i) - 1 ) .  
8 2  h 1’ 

The second term originates from the noise timeautocorrelations. The function f (A) is 
defined as follows. 

1 m 
f ( ~ )  = r e - ^ ‘ -  rz ’ (D.3 

The variable A is assumed to be very small (A << 1) since the breaktime f* is typically large 
compared with unity. Since C(lr1 = 1) = 0, it follows that one should omit the first term 
in (D.2) which leads to the substraction of one from f(A) in equation (D.1). 

The sum p.2) may be evaluated for h << 1 using standard ‘tricks’. Its second derivative 
with respect to A is cz, e-Ar and therefore f”(A)  N 1/A. Also, its first deriviative may 
be approximated by an exponential integral leading to f’(A) n. y + In A, where y = 0.577 
is Euler’s constant. It follows that the function f ( A )  itself may be approximated by the 
expression 

*=I 

ar2 

6 f(A)=-+A(lnA-F) P.3 )  

where i. N 1 - y N 0.4, while s2/6 equals the sum (D.2) for A = 0. Substitution of (D.3) 
and (4.11) into (D.1) leads to (4.36). 
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